
RTI Press

Sharing Research Models:
Using Software Engineering
Practices for Facilitation
Stephanie P. Bryant, Eric Solano, Susanna Cantor,
Philip C. Cooley, and Diane K. Wagener

March 2011

Methods Report

This publication is part of the
RTI Press Methods Report series.

RTI International
3040 Cornwallis Road
PO Box 12194
Research Triangle Park, NC
27709-2194 USA

Tel: 	 +1.919.541.6000
Fax: 	 +1.919.541.5985
E-mail: 	 rtipress@rti.org
Web site: 	 www.rti.org

RTI Press publication MR-0022-1103

This PDF document was made available from www.rti.org as a public service
of RTI International. More information about RTI Press can be found at
http://www.rti.org/rtipress.

RTI International is an independent, nonprofit research organization dedicated
to improving the human condition by turning knowledge into practice. The
RTI Press mission is to disseminate information about RTI research, analytic
tools, and technical expertise to a national and international audience. RTI Press
publications are peer-reviewed by at least two independent substantive experts
and one or more Press editors.

Suggested Citation

Bryant, S. P., Solano, E., Cantor, S., Cooley, P. C., and Wagener, D. K. (2011).
Sharing Research Models: Using Software Engineering Practices for Facilitation.
RTI Press publication No. MR-0022-1103. Research Triangle Park, NC:
RTI Press. Retrieved [date] from http://www.rti.org/rtipress.

©2011 Research Triangle Institute. RTI International is a trade name of Research Triangle
Institute.

All rights reserved. Please note that this document is copyrighted and credit must be provided to
the authors and source of the document when you quote from it. You must not sell the document
or make a profit from reproducing it.

doi:10.3768/rtipress.2011.mr.0022.1103

www.rti.org/rtipress

About the Authors
Stephanie P. Bryant, MS, is a
member of the Bioinformatics Group
at RTI International, specializing in
software development, distributed
systems, and high-performance
computing.

Eric Solano, PhD, is a member
of RTI’s Bioinformatics Group,
specializing in high-performance
computing tools (distributed
computing, grids) in simulations,
modeling, and programming.

Susanna Cantor, BS, a member of
RTI’s Research Computing Division,
specializes in system, software, and
project documentation, and process
and configuration management.

Philip C. Cooley, MS, is an RTI
Fellow in bioinformatics and high-
performance computing.

Diane K. Wagener, PhD, is a
member of the Genomics, Statistical
Genetics, and Environmental
Research group at RTI International.
Her research includes genomics and
proteomics of vaccine response and
informatics support for modeling the
spread of infectious disease.

http://dx.doi.org/10.3768/rtipress.2011.mr.0022.1103

Sharing Research Models: Using Software
Engineering Practices for Facilitation
Stephanie P. Bryant, Eric Solano, Susanna Cantor,
Philip C. Cooley, and Diane K. Wagener

Abstract
Increasingly, researchers are turning to computational models to understand
the interplay of important variables on systems’ behaviors. Although researchers
may develop models that meet the needs of their investigation, application
limitations—such as nonintuitive user interface features and data input
specifications—may limit the sharing of these tools with other research groups.
By removing these barriers, other research groups that perform related work
can leverage these work products to expedite their own investigations. The use
of software engineering practices can enable managed application production
and shared research artifacts among multiple research groups by promoting
consistent models, reducing redundant effort, encouraging rigorous peer
review, and facilitating research collaborations that are supported by a common
toolset. This report discusses three established software engineering practices—
the iterative software development process, object-oriented methodology,
and Unified Modeling Language—and the applicability of these practices to
computational model development. Our efforts to modify the MIDAS TranStat
application to make it more user-friendly are presented as an example of how
computational models that are based on research and developed using software
engineering practices can benefit a broader audience of researchers.

Contents
Introduction	 2

Methods	 2

General Software
Development Tasks	 2

Infectious Disease Models	 3

TranStat Application for
Infectious Disease Models	 3

Software Engineering Practices	 3

The TranStat Modification 	 6

Limitations of the Initial
TranStat Application	 6

Modification of the TranStat
Application 	 7

Using Software Development
Phases to Extend Program
Features	 9

Discussion 	 13

References	 14

Acknowledgments	 Inside back cover

2 	 Bryant et al., 2011 	 RTI Press

Introduction
Biological and medical research has a long history
of modeling complex systems to understand
the impacts of important variables on systems’
behaviors. Traditionally, this research has involved
mathematical modeling; however, computer
modeling (i.e., simulation) is increasingly being used
to understand systems that either are too complex to
have closed-form analytic solutions or are dynamic
systems in which the behavior of a system changes
over time. Increasing model complexity has fostered
the sharing and joint development of models by
multiple, independent research groups to leverage
these work products and expedite investigations.
Examples of this trend are the Models of Infectious
Disease Agent Study (MIDAS), funded by the
National Institute of General Medical Studies,1 and
the Program in Systems Immunology and Infectious
Disease Modeling, funded by the National Institute
for Allergy and Infectious Diseases.

The development and evolution of computer models
involves dynamic model expansion and modification
to address new scientific questions; therefore,
effectively sharing models among investigators can be
a challenge. Because model-specific limitations, such
as nonintuitive user interface features and data input
specifications, may limit ease of use by researchers
who are unfamiliar with an application, models
created for a specific research study are rarely used
outside the originating research group.

In this report, we describe standard software
engineering practices that researchers can adopt
during the model development process to increase
their usability by external research groups. To
support this viewpoint, we provide an example of our
work modifying TranStat, an application developed
by researchers from one of the MIDAS groups. These
practices are widely applicable to other fields of
research.

Methods

General Software Development Tasks
The software development process should follow
a standard product development method. Several
recognized software engineering practices can
benefit the development and implementation of
computational models by promoting standard
development procedures that encompass the
development process from design to deployment. The
use of standard documentation tools in particular can
facilitate wider model distribution among research
groups.

In general, the software development process life
cycle typically has five phases:

•	 Requirements phase— Gather information detailing
the requisite features and use cases of the software
product based on the problem statement.

•	 Design phase—Extract implementation constructs
from the requirements documentation.

•	 Implementation phase—Implement constructs
identified in the design phase in the target
programming language.

•	 Testing phase—Execute the software product to
ensure that it exhibits the proper behavior as
specified in the requirements.

•	 Deployment phase—Transition the successfully
tested product to its production environment.

By using software engineering practices that
emphasize modular design and implementation
to allow for software reuse, extensibility, and
complexity management, researchers can develop
systems that are easier to maintain internally.
They can also develop more robust and usable
computational modeling solutions that are useful
beyond the originating research group, thereby
supporting collaborative efforts. Employing well-
established and accepted industry analysis and
implementation practices can facilitate this type of
model development: three important practices are use
of an iterative software development process (ISDP),
object-oriented methodology (OOM), and Unified
Modeling Language (UML). We discuss these in later
sections of this report.

	 Software Engineering Methods Facilitate Sharing Research Models 	 3

Infectious Disease Models
MIDAS researchers develop “computational models
of the interactions between infectious agents and
their hosts, disease spread, prediction systems,
and response strategies.”1 The models are useful
resources for policymakers, health workers, and
other researchers in understanding and developing
responses to infectious diseases. In the event of an
infectious disease outbreak, policymakers may engage
the MIDAS group to develop specific models that
characterize the situation and provide additional
assessment information. Research groups funded by
the program include a consortium of universities and
not-for-profit institutions.

TranStat Application for Infectious Disease
Models
Developed as a part of the MIDAS effort, the TranStat
application is the result of research by scientists
from the University of Washington and the Fred
Hutchinson Cancer Research Center (hereafter
UW/FH).2 TranStat is a software application used
to analyze data from acute disease outbreaks,
examine transmission characteristics, and estimate
epidemiological characteristics of a disease.3 The
computational model part of the application explores
how the contact between people in a population
affects transmission of a disease.

The input set of the model includes descriptions
of the population members, contact patterns,
infection risk specifications, and the characteristics
of the proposed infection, for example, probability
distributions for the incubation and infectious
periods. The model produces estimates of the length
and outcomes of the infectious disease outbreak. In
addition, the output set includes values for widely
accepted epidemiological metrics, such as secondary
attack rates within and between households,
probability of infection, and case fatality rate. This
model is useful for rapidly investigating infection
disease outbreak scenarios.

TranStat had originally been developed to support
investigations of cases of avian influenza. It
provided mechanisms for data entry, storage, and
analysis of disease outbreak data. Investigators can
use the data to analyze acute disease outbreaks,

examine transmission characteristics, and estimate
the epidemiological characteristics of a disease.3
Originally, however, it had not been designed for
extensibility (i.e., ability to be expanded to support
new or improved features). Some features were hard-
coded and could be changed only by editing and
recompiling the source code. The validation scheme
did not easily support custom configurations. The
initial version also did not easily support dynamic
graphical information display. Applying TranStat to
other research pursuits required additional features
that were not originally supported. Addressing these
constraints could promote use by other researchers,
and this was a major goal of the RTI team.

The revised TranStat application has a modified user
interface, adding an enhanced graphical user interface
(GUI), input validation, extended help features, and
graphical results output. The application is deployed
as a precompiled software package and executed as
a stand-alone PC-based computer application. It is
offered publicly through the MIDAS web portal.4

Specifically, TranStat now provides a GUI
implemented in Java (an object-oriented
programming language) for analysts to enter and
manipulate observed subject-to-subject contact
information and disease transmission characteristics.
The main interface uses tabbed pages to segment
the data input into manageable sections and guide
the user through the process of using the model.
The input information is validated and used by
the computational model to calculate the outbreak
outcomes and epidemiological metrics.

Data analysis is performed by a computational
model of infectious disease propagation through a
population, which is implemented in C programming
language. TranStat displays analysis results in tabular
and graphical formats. The application contains
descriptive assistance features to explain input and
results information.

Software Engineering Practices

Waterfall Software Development Process
A well-known software development process is
the waterfall process (Figure 1). In this, developers
perform the five software development phases

4 	 Bryant et al., 2011 	 RTI Press

sequentially, with the output of one phase serving
as input to the next phase. All input information
for a specific phase is available to researchers while
performing activities within that phase; however,
once completed, developers do not revisit previous
phases.

Object-Oriented Methodology
Object-oriented methodology (OOM) is a software
development ideology that enables the creation of
software programs that utilize object-oriented module
units that are adaptable for use in other programs.
The basic unit in OOM is a class,6 which is a flexible
construct that may represent concrete or abstract
concepts in the problem space.

Classes are template specifications that—during
execution of an object-oriented application—serve
as the basis for creating one or more distinct copies
or instances, called objects. A class contains methods
(i.e., groupings of software instructions) and data
members, called class variables (i.e., named memory
locations shared by the methods) in an access-
controlled unit. OOM class diagrams show the
class structures and the hierarchical, aggregation,
association, and dependency relationships among
classes. Figure 3 represents an OOM class diagram
in which classes are templates that describe specific
elements in the problem domain.

Figure 3 represents a scenario in which people
move among different locations and interact with
one another. The relevant components (i.e., Person,
Location, Home, School, Work) are separate classes.
Within a single application execution, multiple
instances of classes are created. For example, the
Person class is the template specification for creating
multiple Person objects. Each Person object contains
its own copy of class variables whose data values can
be different without affecting other Person objects.

Sets of classes and their relationships can express
increasingly complex relationships and functionality
while serving as an organized framework through
which developers can manage the complexity of the
software system. OOM supports several types of

Figure 1. Waterfall software development process

Requirements

Deployment

Implementation

Design

Testing

This is, however, an idealized model. In reality, not
all the information needed for a specific phase may
immediately be known or available; moreover, an
application’s parameters may change as a result of a
phase’s outputs. Thus, the waterfall process does not
necessarily support the realities of actual software
development and may not be the most efficient
process for certain projects.

Iterative Software Development Process
In contrast to the waterfall process, the iterative
software development process (ISDP, see Figure 2)
allows for flexibility during software development. In
this process, developers conduct multiple cycles of the
waterfall process before delivering the final software
product.5 At the conclusion of each cycle, developers
produce an interim or incremental software product
that incorporates a subset of the requirements to be
tested and evaluated. Each interim product serves as
additional input for the next development cycle. Thus,
developers can revisit the development phases; this
capability allows for sufficient review, management,
and incorporation of any needed software changes
and yields a product that evolves over time using
multiple evaluations.

Figure 2. Iterative software development process

System System

	 Software Engineering Methods Facilitate Sharing Research Models 	 5

relationships among classes, including inheritance
and composite relationships. The inheritance
relationship is similar to a parent-child relationship,
in which derived classes inherit methods and
variables from their base class. Inheritance enables
a derived class to reuse methods from its base class
without duplicating the method instructions in the
derived class.

In Figure 3, the derived classes Home, School, and
Work are derived from the base class, Location, whose
methods and data are available to be reused by the
derived classes. The derived classes can also extend
the base-class functionality by defining additional
class variables and methods.

The composite relationship defines a containment
relationship where the containing class specifies
references or handles to other classes. In Figure 3, for
instance, a Location may contain references to zero
or more Person objects represented in a population.
The example design shown in Figure 3 can be robust
enough to support populations of varying sizes,
from tens to thousands of people. For many software
implementations, the size of the population being
represented is limited only by the physical memory of
the available computing resources.

Communication and interaction in a class are
represented by specifying an appropriate invocation

signature. Specifying a method invocation
means including the name of a method and
requisite parameters within another method’s
set of instructions. In Figure 3, interactions and
communication patterns among the classes are
represented by invocations of methods, such as
doDinner(), doRecess(), and doMeeting().These
invocations are shown with parentheses to indicate
that they can accept the input parameters used by the
methods’ instructions.

During execution of an object-oriented application,
distinct instances of a class are called objects. Within a
single execution, multiple instances of classes may be
created, for example with the Person class. Each object
has an independent set of data variables. During
execution, School objects may have different values
for the data members.

OOM supports the software development process
by specifying the approach developers should use to
analyze, design, implement, and validate an object-
oriented software system:

•	 Requirements phase—Analyze the problem
statement to identify the concepts in the problem
domain and the functionality to be represented in
the software system.

•	 Design phase—Represent the set of identified
concepts using object-oriented notations, and refine
the set of classes based on use cases identified in the
requirements phase.

Figure 3. Object-oriented methodology concepts

Person Class
Representation

Person

-Name : String

+getName()

Home

-isInCity : Boolean

+doDinner()

School

-schedule

+doRecess()

Work

+doTask()
+doMeeting()

Location

-address : String
-numOccupants : Integer

+enter(In p : Person)
+exit(In p : Person)

6 	 Bryant et al., 2011 	 RTI Press

•	 Implementation phase—Express the object-
oriented representations in the classes and extract
relationships between entities in the problem space;
implement class structures in a target object-
oriented programming language.

•	 Validation and testing phases—Ensure that the
implementation delivers the requisite functionality.

Using OOM, researchers can develop modular
applications that are easier to reuse or maintain
than those derived from monolithic programs (i.e.,
a program that contains a single function for the
entire program). Because the related functionality is
grouped into the class modules, a class can be used
many times within an application without duplicating
the software instructions. This extends the reuse of
the application and reduces maintenance because it is
not necessary for developers to make the same change
in multiple places in the application. In a design based
on OOM, a class can encapsulate a set of complex
software instructions or an algorithm and reduce the
algorithm to one software instruction.

Unified Modeling Language
Software object-oriented designs vary in both their
complexity and their platform and language options
for implementation. Unified Modeling Language
(UML) is a common language for expressing and
sharing software object-oriented designs; it is
independent of a software’s programming language
and platform.

The OOM class diagram outlined in Figure 3 is
presented in UML notation. For instance, the open
triangles represent the inheritance relationship
among the classes, the closed diamond represents
a composite relationship, and the boxes represent
a class. UML diagrams capture both the static
(class) structure of the system (captured by various
relationships and dependencies among classes) and
the dynamic behavior (objects and their behavior
while the application is running); they also capture
deployment scenarios.

Because UML is a standard notation for visually
specifying and documenting a software system,7
the language encompasses various model diagrams
suitable for system specification by a variety of
participating practitioners, from the software

architect to the software implementer. In addition,
many existing documentation applications, such as
Microsoft Visio and other software documentation
tools, support UML notation.

The TranStat Modification
As noted above, as part of the MIDAS effort, UW/
FH investigators (the originating research group)
developed the first TranStat application. TranStat
was developed to support investigations of cases of
avian influenza and was not designed (initially) to be
extended beyond this purpose.2

The core of TranStat is a computational model
that explores how contact among people in a
population affects the transmission of a disease. The
input set of the model includes descriptions of the
population members, contact patterns, infection risk
specifications, and characteristics of the proposed
infection, such as probability distributions for
the incubation and infectious periods. The model
produces an output set that estimates the length and
outcomes of the infectious disease outbreaks and
includes values for widely accepted epidemiological
metrics, such as secondary attack rates within and
between households, as well as rates for probability of
infection and fatalities.

Limitations of the Initial TranStat Application
Several application issues limited the use of the initial
TranStat application by external research groups
for other research pursuits. The GUI of the initial
application consisted of a set of independent screens
that appeared based on user selection. These screens
provided little guidance regarding interaction and
navigation expectations to those unfamiliar with the
application.

The original input data validation scheme did not
easily support custom configurations. Also, the
initial TranStat application limited the data input to a
fixed amount. Using the application in other efforts,
which may require more input information, called
for removing the constraints on the amount of input
data specified in the application. Also, the validation
scheme had to be able to check the limits of each data
item in the input set, even when the total number of
data items was not known in advance.

	 Software Engineering Methods Facilitate Sharing Research Models 	 7

Finally, the initial TranStat application
did not easily support a dynamic
graphical information display.
Information displayed in the graphs of
the initial application was generated
based on the input parameters to the
computational module, as shown in
Figure 4. Because the graphical display
used fixed positioning to display
result information, when the display
exceeded the statically allotted display
area, the graph was cut off; no options
for providing additional scroll bars
were available.

Modification of the TranStat
Application
The development and extension
of features to modify the TranStat
application was performed jointly by
the UW/FH group and the software
engineering team at RTI International.
Strong communication between
the geographically distributed
collaborating teams was essential in
achieving the goal of enhancing the
TranStat application, and the teams used multiple
forms of communication, including e-mail, telephone
conference calling, and in-person meetings, to
facilitate this work.8

Each participating team had a slightly different
perspective on the application modification. For
example, the UW/FH group had concerns about
maintaining the appropriateness of the revised
application’s output, whereas the RTI team was
focused on improving the application’s robustness and
user interface aspects.

To establish a common direction for this
collaborative development effort, the teams used
the ISDP to identify and refine the main tasks for
the modification. Determining the scope of the
modification consisted of examining the initial
TranStat application, identifying suitable areas for
modification, and designing modifications that
accommodated the computational model. In addition,
overcoming modification challenges required a clear
understanding of the dynamics of gathering and

preparing the input data for use by the computational
model and refining the requirements to address
potential concerns of a broader community of users.

The teams concluded that modifying TranStat should
involve the following three steps:

1.	 Modify the GUI of the initial application with
features that could support a wider set of potential
users.

2.	 Extend the data handling capabilities.

3.	 Improve the application’s data visualization
capabilities.

Modifying the Graphical User Interface
The changes we made to refine the initial application
ranged in complexity of implementation. Extending
the GUI was the most complex task. It required
considerable communication and input from members
of both teams. We needed to work closely with the
originating research group to capture their expertise
in using the initial application and to translate that
knowledge into graphical representations.

Figure 4. Sample screens of initial TranStat application

8 	 Bryant et al., 2011 	 RTI Press

For example, the GUI requirements for TranStat
either were highly focused on the research group’s
recent investigation or were fairly abstract because
of the absence of insight as to how other researchers
might use the application. In addition, because
the GUI was not designed to be used beyond the
originating research group, its design had not
supported addition of new features or extension of
existing features.

The teams addressed these identified constraints at
key stages in the ISDP and used them as a basis for
developing a modular and flexible interface solution
that was compatible with the existing computational
model. That is, we implemented modified features
according to an extensible object-oriented software
design using accepted software implementation
practices. The RTI team used the Jigloo GUI
library9—a commercially available resource—that
met both teams’ expectations and the anticipated
needs of other users. The GUI now supports more
dynamic data entry and parameter customization. In
addition, we used a tabbed page layout to segment the
data entry and analysis features.

The RTI team applied OOM techniques to analyze
the initial program structure and develop a modular
design that contained OOM relationships among the
indentified constructs. The user interface of the initial
TranStat application was implemented as separate
windows; however, for the revised design, the team
extracted and captured the common functionality
of each individual window into an OOM base class
that could be reused. In addition, the team captured
the specialized features of the segmented data
windows in derived classes, which extended the
functionality of the base class. Finally, the RTI team
decided to use a tabbed container as the primary user
interface construct. This container enabled the team
to incorporate consistent display elements, such as
the layout features, help buttons, and navigational
buttons.

In short, the revised design combines common
functionality and specialized functionality into
a manageable and extensible GUI. The initial
application has been extended with an revised user
interface and supporting features that may increase
the model’s use by other external researchers.

Extending the Data Handling Capabilities
The development effort we used established software
development practices supported by an iterative
software development process. We enhanced the
user experience by providing ordered data entry
pages, segmenting data entry and analysis features
into manageable groupings. The model results are
shown as formatted text and graphics, accompanied
by expanded explanatory labeling. We extended the
data validation scheme to ensure data integrity prior
to data analysis.

RTI staff obtained the requirements for extending
TranStat’s data from the UW/FH research group;
we focused on data import, validation, and storage.
Data import addresses the manner in which model
configuration values residing in external text files
are transferred from the text files to the application’s
memory space. During data transfer, data validation
checks the data values to ensure that they are within
acceptable limits; once this step is completed, the
application stores all validated data in its active
memory.

Extending the data input and validation features was
a moderately complex task with a wide scope. The
initial TranStat application had provided a limited
description of the data format to those unfamiliar
with the design of the computational model. In
addition, the arrangement of the data in memory
had not been conducive to easy access by all program
segments requiring the information.

The amount of data required to describe a target
population can be considerable. Because the size
of the population and the supporting data are
not known until runtime, the design of the initial
TranStat application had not been flexible enough to
support data of varying complexity.

The RTI team used OOM to analyze the data
import requirements of the application and
convey the lessons and experience gained by the
UW/FH research team through the course of their
investigation within a flexible data import algorithm
that could support the input of data of varying
complexity. Before beginning work, we consulted
members of the UW/FH group to understand the
purpose and limits of each data item in the external

	 Software Engineering Methods Facilitate Sharing Research Models 	 9

text file. Then the RTI team examined the initial
implementation to determine common features of the
requisite processing steps. We used OOM techniques
to partition the data into appropriate groupings
that enabled application components to access data
reusing the same algorithm. The revised application’s
validation algorithm validated all data before a user
was permitted to initiate the data analysis.

Improving Data Visualization Capabilities
Adapting the visual presentation of some computed
results was a low-complexity task. It involved
ensuring that the proper output information was
available and correctly formatted for use by the
classes in the data visualization library.

In accordance with the reuse strategy, the RTI team
used the JFreeChart10 data visualization library
to produce graphs and charts of the calculated
epidemic curve and outbreak timelines for the input
data. JFreeChart is an open-source and object-
oriented data visualization library written in the Java
programming language. The team integrated the
data visualization package into the revised TranStat
application. Because the TranStat application and the
JFreeChart visualization library were written in the
same object-oriented programming language, this
effort entailed making the appropriate data available
to the data visualization library and invoking the
proper library methods for the graphing package
to display the data in chart or graph form with
explanatory labeling.

Testing
In the revised application, the validation algorithm
checks the data items, provides assistive messages
(i.e., dialog boxes) when data items are outside of
expected limits, and logs entries that identify the data
item that failed validation. The assistive messages
indicate the location of the data item within the
input file that failed validation, the expected value,
and the purpose of the data item. The validation
algorithm also propagates changes to data values to
all displays so that they display all the latest validated
information.

Using Software Development Phases to
Extend Program Features
The RTI team used ISDP phases to support the
development and extension of features to produce
a more refined version of TranStat. ISDP aided the
team’s work by establishing a common direction
for the collaborative development effort between
UW/FH researchers and the software engineering
group at RTI.

With ISDP as a guiding framework and key
collaborative tool, we were able to use the process
phases to identify tasks jointly and to focus our efforts
in a common direction. The design phase entailed
examining the application’s original state, identifying
suitable areas for modification, and designing
modifications that accommodated the existing
program structures. The RTI team implemented
the changes according to the modification designs.
The RTI team performed initial testing using input
data sets provided by the UW/FH group. Later, for
objective implementation review, separate testing
personnel from RTI tested the application. During the
development phase, RTI staff tested interim versions
of the application and the UW/FH group reviewed
them.

After both groups determined that the set of requisite
features was present and that the output results of
several testing situations were consistent with the
UW/FH research group’s expected model results, the
RTI team released the application to the public by
making it available through the MIDAS web portal
for download. The portal offers users the ability to
submit comments and raise issues regarding the new
release.

Customized Iterative Software Development Process
Applying orderly software engineering practices to
a rapidly evolving software that is focused on the
computational modeling of dynamic systems can
be challenging because the computational model
must incorporate new discoveries or observations as
they are made. Thus, the dichotomy between control
for the purpose of stability and change influenced
by discovery is ever-present. To account for this,
the RTI team worked closely with the researchers
to understand or develop their requirements while

10 	 Bryant et al., 2011 	 RTI Press

also considering these requirements and supporting
implementation in a broader context for other users.

At key points in each development cycle of the
iterative process used for the TranStat modification,
the teams established a nonmodifiable, checkpoint
software package so that the RTI team, as well as the
UW/FH group, could perform appropriate testing
and validation of the rapidly evolving software.
The RTI team implemented the changes to the
TranStat application according to the modification
plan and performed initial testing using input data
sets provided by the UW/FH group. A separate
testing team at RTI performed sequent testing to
ensure objective implementation reviews. During
development, the UW/FH group also tested and
revised interim versions of the TranStat application in
order to maintain compatibility between the revised
GUI and the underlying computational model.

The two teams worked together to slightly modify
the software development process to allow greater
latitude for incorporating critical modifications
discovered during testing and validation. In addition,

the RTI team implemented urgent modifications and
tested them before proceeding to the next iterative
cycle of development.

Features of the Revised TranStat Application
Figure 5 shows key elements of the revised TranStat
application using UML notation. Using UML enables
programmers to discuss or exchange key elements
of software design independent of programming
language and platform. The modular design shown
in Figure 5 supports the addition of new ordered
data entry pages that segment data entry and
analysis features into manageable groupings and
allows for changes in the order of the pages and the
incorporation of other output display libraries. The
ability to reuse the application may reduce start-up
time for related investigations.

As shown in Figure 5, the revised TranStat
application’s tabbed display functionality is contained
in the InfoTabContainer. Each data input page is
presented by a class derived from the InfoTabBase
class. The navigation scheme that dictates the order of

Figure 5. Revised TranStat application design

InfoTabContainer

-infoTabCount : Integer
-dataValidated : Boolean

+goToNextTab() : Boolean
+computeResults() : Boolean

subsystem
ComputationalModel

subsystem
ChartingPackage

NavigationAlgorithm

-orderLookUpTable

+getNextItem()InfoTabBase

-tabCaption : String
-windowTitle : String

+validate() : Boolean
+getHelpText() : String

DataStore

OutbreakTab

-helpText : String

+validate() : Boolean

InfectionTab

-helpText : String

+validate() : Boolean

IncubationTab

-helpText : String

+validate() : Boolean

AnalysisTab

-helpText : String

+getAnalysisConfigParams()

PopulationTab

-helpText : String

+validate() : Boolean

ResultsTab

-helpText : String

+showEpiCurve()
+showTimeLine()

ExposureTab

-helpText : String

+validate() : Boolean

	 Software Engineering Methods Facilitate Sharing Research Models 	 11

data input is contained in the NavigationAlgorithm
class. Data input pages are represented as derived
classes, labeled OutbreakTab, InfectionTab,
IncubationTab, PopulationTab, and ExposureTab.
The derived classes have a validate() method
containing instructions for ensuring that collected
data meet expected limits, and a helpText variable
containing assistive descriptions of the input data.
The AnalysisTab class collects parameter values for
establishing the analysis constraints. The ResultsTab
class displays calculated values of epidemiological
metrics and issues commands to the charting library
to display analysis results as a graph or chart. The
computational model and the charting library
are represented in the design as <<subsystem>>
ComputationalModel and ChartingPackage modules,
consisting of groupings of classes marked as a single
functional module.

The revised TranStat application has a modified GUI,
a revised validation scheme that ensures that input
data are within the boundaries and specifications
of the computational model to produce results, and
an extended graphical results output. The revised

application also includes annotated data entry fields
and output graphics with expanded explanatory labels
and assistive text display options.

Figure 6 shows the revised TranStat GUI, which
allows for dynamic display capabilities, integrated
input validation, and directed navigation among
data entry screens. As shown, the user experience
is enhanced by the ordered data entry pages that
segment data entry and analysis features into
manageable groupings. The navigation tabs guide a
user through the process of using the computation
model, including data input, data analysis invocation,
and the display of results. The revised user interface
also includes a Help option, which displays additional
explanatory text. The descriptive labeling, extensive
help options, and guided direction of data input assist
new users in using the computational model.

The RTI team augmented the data input process to
include data validation and extended help features
to assist users with specifying input parameters. To
support the validation, we introduced a navigation
capability to enforce the order of data entry and to

Figure 6. Revised TranStat user interface

12 	 Bryant et al., 2011 	 RTI Press

achieve more efficient propagation
of changes to data. Data storage and
tracking features are updated in turn
so that user-initiated adjustments to
input parameters are reflected in the
system immediately upon validation.

In addition to the modified GUI,
the revised application offers two
options for displaying analysis
output in graph form. In contrast
with the initial application output
shown in Figure 4, Figures 7–9
show how incorporating the data
visualization library into the
TranStat application enhanced the
presentation of analysis results
considerably. In particular, it
enabled the presentation of high-
quality graphs and charts containing
dynamically generated explanatory
annotations.

Figure 7 shows the calculated
analysis results in a tabular form.
Figure 8 shows an example output
chart for a projected epidemic
curve. For each day of the simulated
outbreak, the table in the top left
of Figure 8 shows each household,
labeled HH, and the number of cases
or persons infected. The information
in the table is also presented as a
graph, the epidemic curve, with each
household represented as a distinctly
colored bar in that day’s column. The
epidemic curve further shows the
total number of infected cases for
each day of the simulated outbreak.

Figure 9 shows the calculated
output of the simulated outbreak
timeline. For each member of the
simulated population, identified
by the subject number (SN), the
graph shows the duration of their
illness in the simulation. The color

Figure 7. TranStat analysis output: tabular information

Figure 8. TranStat analysis output: epidemic curve

	 Software Engineering Methods Facilitate Sharing Research Models 	 13

Whereas the TranStat modification effort was limited
to addressing the application’s user interface aspects,
researchers can incorporate software engineering
principles during the design and development of
computational models to develop models that other
research groups can use or build upon. The ISDP
and sufficient oversight can help manage software
development while supporting dynamic research
discovery. Researchers can use OOM to develop
computational models that provide a basis for
subsequent work, with application modules that are
adaptable to other computational modeling efforts.
Finally, computational model designs expressed
in UML notation can present the model approach,
relationships, and lessons learned in a manner
independent of programming language, thereby
supporting peer review and understanding.

Although some planning is involved in applying
software engineering techniques to the development
of computational models, the resulting UML designs
and computational models represent a tested and
peer-reviewed repository of tools to expedite research
investigations.

of the line indicates the subject’s
final disease status (i.e., deceased,
recovered, treatment, hospitalized).
The accompanying table presents a
summary of information for each
subject, including his or her assigned
neighborhood, household, subject
number, sex, and age.

Obtaining the TranStat Application
The RTI team continues to offer the
distribution of TranStat to the public.
The application is available without
restriction through the MIDAS
portal, https://www.epimodels.org
/midas/about.do.4 The portal offers
users the ability to submit comments
and raise issues regarding the latest
version of TranStat.

Discussion

Figure 9. TranStat analysis output: outbreak timeline

Computational models are valuable tools in
characterizing infectious disease events, especially
in situations where access to timely information
is crucial for rapid response. Researchers’ ability
to leverage existing tools can expedite subsequent
investigations using stable and robust tools. Moreover,
software implementation of computational models
developed within research groups may be of interest
to other research groups. In its original state, however,
the software may not be immediately usable by the
other researchers. By using software engineering
best practices—such as the ISDP, OOM, and UML—
developers can develop software applications that are
extensible and easier to maintain, and that support
collaboration among researchers.

The resulting tools can provide a common toolset
for researchers with common interests, which can
facilitate activities such as collaborative discussions
and encourage research in new directions.

https://www.epimodels.org/midas/about.do

14 	 Bryant et al., 2011 	 RTI Press

6.	 Booch G. Object-oriented analysis and design
with applications. 2nd ed. Redwood City (CA):
Benjamit/Cumming Publishing; 1994.

7.	 Quatrani T. Introduction to the unified modeling
language. [Internet]. DeveloperWorks: IBM’s
Resource for Developers’ Web site. [Updated
2003 Nov 24; cited 2010 July 29]. Available from:
http://www.ibm.com/developerworks/rational
/library/998.html

8.	 Maltz, E. Is all communication created equal?: an
investigation into the effects of communication
mode on perceived information quality. Journal
of Product Innovation Management, 2000:17(2):
110-27.

9.	 Jigloo SWT/swing GUI builder for Eclipse
and WebSphere [Internet]. [cited 2010 Aug 5].
Available from: http://www.cloudgarden.com
/jigloo/.

10.	 JFreeChart [Internet]. [cited 2010 Aug 5].
Available from: http://www.jfree.org/jfreechart/.

1.	 National Institute of General Medical Sciences.
Models of Infectious Disease Agent Study.
[Internet]. [cited 2010 July 29]. Available from:
http://www.nigms.nih.gov/Initiatives/MIDAS/.

2.	 Yang Y, Halloran M, Sugimoto J, Longini I.
Detecting human-to-human transmission of
avian influenza A (H5N1). Emerg Infect Dis.
2007;13(9):1348-53.

3.	 National Institute of General Medical Sciences.
MIDAS TranStat Fact Sheet. Models of Infectious
Disease Agent Study [Internet]. [cited 2010 July
29]. Available from: https://www.epimodels.org
/midasdocs/factsheets/MIDAS_TranStat_web.pdf

4. 	 National Institute of General Medical Sciences.
Models of Infectious Disease Agent Study
[Internet], [cited 2010 July 29]. Available from:
https://www.epimodels.org/midas/about.do

5.	 Larman C, Basili V. Iterative and incremental
development: a brief history. Computer.
2003;36(6):47-56.

References

https://www.epimodels.org/midasdocs/factsheets/MIDAS_TranStat_web.pdf
http://www.ibm.com/developerworks/rational/library/998.html
http://www.cloudgarden.com/jigloo/

Acknowledgments
The authors wish to thank Yang Yang, PhD, affiliated with the Fred Hutchinson
Cancer Research Center, Seattle, Washington, and Jonathan Sugimoto and
Ira Longini, PhD, both affiliated with the Fred Hutchinson Cancer Research
Center and the University of Washington, Seattle, for contributing their
computational model implementation to this effort. This work was supported
by cooperative agreement U24GM087704 (Models of Infectious Disease Agents
Study Information Technology Resource) from the National Institute of General
Medical Sciences of the National Institutes of Health.

RTI International is an independent, nonprofit research organization dedicated
to improving the human condition by turning knowledge into practice. RTI
offers innovative research and technical solutions to governments and businesses
worldwide in the areas of health and pharmaceuticals, education and training,
surveys and statistics, advanced technology, international development,
economic and social policy, energy and the environment, and laboratory and
chemistry services.

The RTI Press complements traditional publication outlets by providing another
way for RTI researchers to disseminate the knowledge they generate. This PDF
document is offered as a public service of RTI International. More information
about RTI Press can be found at www.rti.org/rtipress.

www.rti.org/rtipress 	 RTI Press publication MR-0022-1103

	Abstract
	Introduction
	Methods
	General Software Development Tasks
	Infectious Disease Models
	TranStat Application for Infectious Disease Models
	Software Engineering Practices
	The TranStat Modification
	Limitations of the Initial TranStat Application
	Modification of the TranStat Application
	Using Software Development Phases to Extend Program Features

	Discussion
	References
	Acknowledgments

